1 Evaluate $\int_{1}^{2} x^{2} \ln x \, dx$, giving your answer in an exact form. [5]

2 Fig. 7 shows the curve $y = \frac{x^2}{1 + 2x^3}$. It is undefined at x = a; the line x = a is a vertical asymptote.

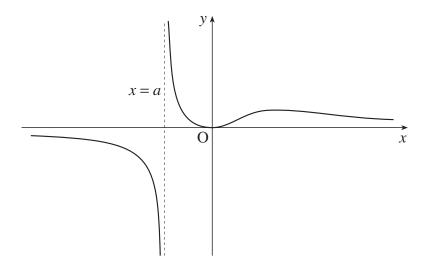


Fig. 7

(i) Calculate the value of a, giving your answer correct to 3 significant figures. [3]

(ii) Show that $\frac{dy}{dx} = \frac{2x - 2x^4}{(1 + 2x^3)^2}$. Hence determine the coordinates of the turning points of the curve.

(iii) Show that the area of the region between the curve and the x-axis from x = 0 to x = 1 is $\frac{1}{6} \ln 3$.

3 Fig. 8 shows part of the curve $y = x \cos 2x$, together with a point P at which the curve crosses the x-axis.

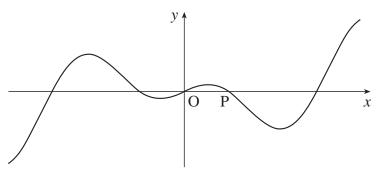


Fig. 8

- (i) Find the exact coordinates of P.
- (ii) Show algebraically that $x \cos 2x$ is an odd function, and interpret this result graphically. [3]

[3]

(iii) Find
$$\frac{dy}{dx}$$
. [2]

- (iv) Show that turning points occur on the curve for values of x which satisfy the equation $x \tan 2x = \frac{1}{2}$. [2]
- (v) Find the gradient of the curve at the origin.

Show that the second derivative of $x \cos 2x$ is zero when x = 0. [4]

(vi) Evaluate $\int_0^{\frac{1}{4}\pi} x \cos 2x \, dx$, giving your answer in terms of π . Interpret this result graphically. [6]