1 Evaluate $\int_{1}^{2} x^{2} \ln x \mathrm{~d} x$, giving your answer in an exact form.

2 Fig. 7 shows the curve $y=\frac{x^{2}}{1+2 x^{3}}$. It is undefined at $x=a$; the line $x=a$ is a vertical asymptote.

Fig. 7
(i) Calculate the value of a, giving your answer correct to 3 significant figures.
(ii) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x-2 x^{4}}{\left(1+2 x^{3}\right)^{2}}$. Hence determine the coordinates of the turning points of the curve.
(iii) Show that the area of the region between the curve and the x-axis from $x=0$ to $x=1$ is $\frac{1}{6} \ln 3$.

3 Fig. 8 shows part of the curve $y=x \cos 2 x$, together with a point P at which the curve crosses the x-axis.

Fig. 8
(i) Find the exact coordinates of P .
(ii) Show algebraically that $x \cos 2 x$ is an odd function, and interpret this result graphically.
(iii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(iv) Show that turning points occur on the curve for values of x which satisfy the equation $x \tan 2 x=\frac{1}{2}$.
(v) Find the gradient of the curve at the origin.

Show that the second derivative of $x \cos 2 x$ is zero when $x=0$.
(vi) Evaluate $\int_{0}^{\frac{1}{4} \pi} x \cos 2 x \mathrm{~d} x$, giving your answer in terms of π. Interpret this result graphically. [6]

